Pipeline ======== Union pipeline -------------- Using sklego to create different pipeline for categorical and numerical features. .. code-block:: python from sklearn.pipeline import make_union, make_pipeline from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.impute import SimpleImputer from sklego.preprocessing import PandasTypeSelector cat_features_preprocessing = make_pipeline(PandasTypeSelector(exclude='number'), SimpleImputer(strategy='constant', fill_value='unknown'), OneHotEncoder(categories=[['normal', 'sth', 'fixed']], handle_unknown='ignore')) num_features_preprocessing = make_pipeline(PandasTypeSelector(include='number'), SimpleImputer(strategy='median'), StandardScaler()) preprocessor = make_union(cat_features_preprocessing, num_features_preprocessing)